Comparative Genomic Paleontology across Plant Kingdom Reveals the Dynamics of TE-Driven Genome Evolution
نویسندگان
چکیده
Long terminal repeat-retrotransposons (LTR-RTs) are the most abundant class of transposable elements (TEs) in plants. They strongly impact the structure, function, and evolution of their host genome, and, in particular, their role in genome size variation has been clearly established. However, the dynamics of the process through which LTR-RTs have differentially shaped plant genomes is still poorly understood because of a lack of comparative studies. Using a new robust and automated family classification procedure, we exhaustively characterized the LTR-RTs in eight plant genomes for which a high-quality sequence is available (i.e., Arabidopsis thaliana, A. lyrata, grapevine, soybean, rice, Brachypodium dystachion, sorghum, and maize). This allowed us to perform a comparative genome-wide study of the retrotranspositional landscape in these eight plant lineages from both monocots and dicots. We show that retrotransposition has recurrently occurred in all plant genomes investigated, regardless their size, and through bursts, rather than a continuous process. Moreover, in each genome, only one or few LTR-RT families have been active in the recent past, and the difference in genome size among the species studied could thus mostly be accounted for by the extent of the latest transpositional burst(s). Following these bursts, LTR-RTs are efficiently eliminated from their host genomes through recombination and deletion, but we show that the removal rate is not lineage specific. These new findings lead us to propose a new model of TE-driven genome evolution in plants.
منابع مشابه
Molecular Evolution of Chloroplast DNA Sequences1
Comparative data on the evolution of chloroplast genes are reviewed. The chloroplast genome has maintained a similar structural organization over most plant taxa so far examined. Comparisons of nucleotide sequence divergence among chloroplast genes reveals marked similarity across the plant kingdom and beyond to the cyanobacteria (blue-green algae). Estimates of rates of nucleotide substitution...
متن کاملComparative genomics of Brassicaceae crops
The family Brassicaceae is one of the major groups of the plant kingdom and comprises diverse species of great economic, agronomic and scientific importance, including the model plant Arabidopsis. The sequencing of the Arabidopsis genome has revolutionized our knowledge in the field of plant biology and provides a foundation in genomics and comparative biology. Genomic resources have been utili...
متن کاملGenetic Drift, Not Life History or RNAi, Determine Long-Term Evolution of Transposable Elements
Transposable elements (TEs) are a major source of genome variation across the branches of life. Although TEs may play an adaptive role in their host's genome, they are more often deleterious, and purifying selection is an important factor controlling their genomic loads. In contrast, life history, mating system, GC content, and RNAi pathways have been suggested to account for the disparity of T...
متن کاملThe Arabidopsis genus
Arabidopsis thaliana is a model plant species and its molecular dissection has greatly contributed to our understanding of the systems preventing genome invasion by transposable elements (TE). Recent advances suggest that A. thaliana may be more efficient than its congener A. lyrata at controlling TE expression and proliferation. The comparative analysis of TE transcription in A. thaliana and A...
متن کاملTIRfinder: A Web Tool for Mining Class II Transposons Carrying Terminal Inverted Repeats
Transposable elements (TEs) can be found in virtually all known genomes; plant genomes are exceptionally rich in this kind of dispersed repetitive sequences. Current knowledge on TE proliferation dynamics places them among the main forces of molecular evolution. Therefore efficient tools to analyze TE distribution in genomes are needed that would allow for comparative genomics studies and for s...
متن کامل